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The unprecedented success of speech recognition methods has stimulated the wide usage of intelligent audio systems,
which provides new attack opportunities for stealing the user privacy through eavesdropping on the loudspeakers. Effective
eavesdropping methods employ a high-speed camera, relying on LOS to measure object vibrations, or utilize WiFi MIMO
antenna array, requiring to eavesdrop in quiet environments. In this paper, we explore the possibility of eavesdropping on
the loudspeaker based on COTS RFID tags, which are prevalently deployed in many corners of our daily lives. We propose
Tag-Bug that focuses on the human voice with complex frequency bands and performs the thru-the-wall eavesdropping
on the loudspeaker by capturing sub-mm level vibration. Tag-Bug extracts sound characteristics through two means: (1)
Vibration effect, where a tag directly vibrates caused by sounds; (2) Reflection effect, where a tag does not vibrate but senses
the reflection signals from nearby vibrating objects. To amplify the influence of vibration signals, we design a new signal
feature referred as Modulated Signal Difference (MSD) to reconstruct the sound from RF-signals. To improve the quality of the
reconstructed sound for human voice recognition, we apply a Conditional Generative Adversarial Network (CGAN) to recover
the full-frequency band from the partial-frequency band of the reconstructed sound. Extensive experiments on the USRP
platform show that Tag-Bug can successfully capture the monotone sound when the loudness is larger than 60dB. Tag-Bug
can efficiently recognize the numbers of human voice with 95.3%, 85.3% and 87.5% precision in the free-space eavesdropping,
thru-the-brick-wall eavesdropping and thru-the-insulating-glass eavesdropping, respectively. Tag-Bug can also accurately
recognize the letters with 87% precision in the free-space eavesdropping.
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Fig. 1. Thru-the-wall eavesdropping via RFID tags.
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1 INTRODUCTION
Acoustic eavesdropping is one of the most significant security concerns, as the voice communication between
people is an unencrypted transmission channel, making it easy to obtain the sensitive information. Traditional
acoustic eavesdropping methods, which employ hidden or tampered microphones [8, 23], can be prevented by
using soundproof insulation. Due to such insulation, the user may involuntarily neglect the acoustic eavesdropping
in such scenario, making the loudspeaker a potential threat for eavesdropping. Particularly, benefiting from
the unprecedented success of the advancement in speech recognition, the intelligent audio systems have been
widely integrated into our daily life, which largely extends the usage of loudspeakers and brings new attack
opportunities. For example, Google Home may replay the passwords, when the ‘Remember’ function is activated
to record the private information by the user. Then, private information, e.g., daily schedule, passwords and even
life style, may be leaked. Another example is that online meetings during COVID-19 bring great convenience to
many companies and employees when working from home. However, all these meetings involve the usage of
loudspeakers heavily, which may lead to severe personal and corporate proprietary information leakage.

Due to its severe consequences, there have been active research efforts on eavesdropping of loudspeakers. Davis
et al. leverage a high-speed camera to capture the vibrations of objects (e.g., a glass of water or a potted plant)
caused by the loudspeaker to perceive the sound [10], which relies on the existence of line-of-sight communication.
Sensors such as gyroscopes embedded in a smartphone have also been exploited to capture the sound from the
loudspeaker [26]. This approach works through the common medium with the loudspeaker and does not work
for the thru-the-wall eavesdropping. It is also limited by the battery power of mobile devices. ART eavesdropper
uses wireless signals to perceive the vibration of the loudspeaker diaphragm based on a specific MIMO antenna
array [37]. This solution incurs hardware (i.e., MIMO antenna array) with relatively high cost and works mostly
in quiet environments. Any nearby vibrations, e.g., a spinning fan, can affect the receiving signal. Some advanced
work has shown that Ultra High Frequency (UHF) RFID tags can capture tiny vibrations. TagSound [20] perceives
the mono-tone sound vibration by using harmonic signals, and others [40, 41] capture the ambient vibrations
based on the phase variation by using the compressive sensing. However, the harmonic signals are too weak
to perform the thru-the-wall eavesdropping, and the compressive sensing cannot be used to extract the human
voice with none-sparse frequency bands.

In this paper, we explore the possibility of eavesdropping the human voice played by the loudspeaker based on
the surrounding COTS RFID tags, which could be attached on many everyday objects as shown in Figure 1(a).
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On one hand, many daily products from online purchasing, such as water bottles, delivery packages, hang tags,
envelopes books, etc. , come with RFID tags. It greatly improves the chances of RFID tags appearing in our
lives, and makes the tags easily overlooked. On the other hand, the adversary can even intentionally hide the
battery-less and light-weighted RFID tags beside the loudspeaker, e.g., under the table, which is hard to be detected
and is able to eavesdrop in a long term. As shown in Figure 1(b), we develop Tag-Bug, an effective system to
perform the thru-the-wall eavesdropping on the loudspeaker based on the received physical-layer signals. Similar
to the previous attacks [6, 17, 26], we consider the loudspeaker as the sound source, which is widely used in a
voice assistant system, e.g., Google Home and Amazon Alexa, rather than the live human speech. The reason
is that the live human speech mainly leads to the air flow from the mouth with small vibration of vocal cords,
while the loudspeaker mainly leads to the diaphragm vibration. Thus, the human speech can be drowned by the
vibration due to the air flow in the extracted sound. In particular, Tag-Bug can extract the sound from loudspeaker
through two ways: (1) Vibration effect, the tag directly vibrates caused by sounds, e.g., the tag vibrates directly
due to the playing sounds when attached on the delivery package. (2) Reflection effect, the tag does not vibrate but
senses the reflection signals from nearby vibrating objects due to the sound, e.g., the tag captures the reflection
signal from a cup of water, which vibrates due to the playing sounds. To extract the tiny vibration of the sound,
we build a model to decompose the received signals and extract the Modulated Signal Difference (MSD) as the
vibration indicator. Since the RFID tag is more sensitive to the low-frequency sound due to the larger sound
energy, we leverage a Conditional Generative Adversarial Network (CGAN) to recover the high-frequency band
by referring to the low-frequency band, so as to improve the quality of recovered human voice.

There are three main challenges in performing the eavesdropping via RFID tags. The first challenge is to detect
the sub-mm level vibration caused by the sound. Traditionally, the vibration of the loudspeaker diaphragm is usually
smaller than 1mm [16]. However, such tiny vibration results in the phase change below 0.04 radians, which
is close to the noise level [39]. To address this challenge, we build a transmitting model and extract amplified
vibration features from the received signal. Particularly, we extract the Modulated Signal Difference (MSD) as the
difference of signals between the ON and OFF modulation states. The phase change of MSD indicates the tag
displacement due to the vibration. Furthermore, we propose the amplified MSD by subtracting the average signal
of OFF states in a time window. The amplified MSD can extract the sound from either the vibration effect or the
reflection effect. In this way, Tag-Bug can extract the sub-mm level vibration, when either the tag itself or the
nearby object vibrates caused by the sound wave.
The second challenge is to reduce the interference of the periodic commands sent by the RFID reader. In RFID

systems, the periodic reader signal, e.g., the QUERY and ACK commands, is much stronger than the backscattered
signal from the tag. Even if the reader signal does not overlap with the tag signal in the time domain, the periodic
reader signal will lead to the large noise in the frequency band when received by the antenna. To address this
challenge, we randomize the tag response mechanism based on the C1G2 protocol. In particular, we randomly set
the frame-size of each query cycle and let the tag randomly retransmit the EPC command. Then, the noise due to
the periodic commands can be significantly reduced.

The third challenge is to refine the recovered human voice extracted from the amplified MSD. Human voice is the
main target of the concerns during the eavesdropping. However, limited by the inherent material characteristics
of RFID tags, the signals of high-frequency bands are very weak in the extracted sound from the amplified MSD, so
the recovered sound is unclear for recognition. To address this challenge, we investigate the correlation of signals
with different frequencies, and find that high-frequency signals are usually harmonic of low-frequency signals.
To efficiently capture the correlation among different frequency bands, we develop a CGAN to recover the full-
frequency band by referring to multiple low-frequencies. In this way, the refined sound has more comprehensive
frequency band, and could be recognized more accurately.

This paper makes three contributions. First, we show the possibility of using low-cost and easily-overlooked
RFID tags to effectively perform the thru-the-wall eavesdropping, pushing the limit of RFID sensing capability to
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the sub-mm level. Particularly, Tag-Bug can extract the sound vibration either from the vibration effect or the
reflection effect, improving the applicability of our system. Second, we build a signal transmitting model to extract
the vibration from the amplifiedModulated Signal Difference (MSD) by removing the strong interference. A CGAN
based method is designed to improve the quality of the recovered human voice. Third, we implemented our
system Tag-Bug on the USRP platform. Real-world experiments show that Tag-Bug can successfully capture the
monotone sound when the loudness is larger than 60dB. Tag-Bug can efficiently recognize the numbers of human
voice with 95.3%, 85.3% and 87.5% precision in the free-space eavesdropping, thru-the-brick-wall eavesdropping
and thru-the-insulating-glass eavesdropping, respectively. Tag-Bug can also accurately recognize the letters with
87% precision in the free-space eavesdropping.

2 PROBLEM FORMULATION
In this paper, we consider the novel problem of launching the side-channel eavesdropping on the loudspeaker by
leveraging the vibration of ambient RFID tag due to the sound. Our attack mainly focuses on the sound played by
the loudspeaker, rather than the voice of live human speech, because the live human speech mainly leads to the
air flow instead of the air vibration due to the sound. As a result, the vibration extracted from the tag signal is
related to the air flow, instead of the human voice. In this paper, we use the USRP platform to extract the sound
due to the convenient access to the physical-layer signal.

2.1 Attack Model
We assume a victim user with a loudspeaker and some surrounding objects, which are attached with the passive
RFID tags. Since the RFID tags are widely used to identify the objects in either the online shopping or the
unmanned supermarket, any tagged object can be a potential threat to the user privacy. For example, the labeling
tags on the delivery packages or the hang tags of the clothes from the online market may all open up a window
of opportunity for eavesdropping. Besides, the adversary can even intentionally hide the battery-less and light-
weighted RFID tags beside the loudspeaker, e.g., under the table, which is hard to be detected and is able to
eavesdrop in a long term. In this paper, we mainly focus on the private information, which are made up of number
or letters, e.g., social security number, a password, a credit card number, etc.
The adversary leverages an RFID system that can interrogate the RFID tags, which can work even in thru-

the-wall scenario, and further extract the sound from the RF-signal and deduce the private information. Once
any tag is placed beside the loudspeaker, the RF-signal backscattered by the tag can capture the sound vibration.
Particularly, the tag can be directly vibrated by the sound due to the vibration effect, or affected by a nearby
vibrating object due to the reflection effect. The adversary continuously collects the RF-signals and extracts the
sound information when the loudspeaker is playing an audio sound, e.g., a conversation during an online meeting.
By analyzing the spectrogram energy distribution, the adversary can extract the sound from the RF-signals to
deduce the private information, even if the adversary is outside the room of the victim.

2.2 Eavesdropping Scenarios
The side channel attack described in this paper can be launched via three different means: medium-based, aerial-
based and reflection-based eavesdropping. Medium-based eavesdropping means the tag is directly attached on
the vibration medium, e.g., the loudspeaker. Hence, the sound transmission can lead to the tiny vibration of the
medium and the tag. Aerial-based eavesdropping means that the tag is vibrated due to the aerial sound played by
the loudspeaker, where recent work[6, 17, 26] has already shown its feasibility of capturing aerial sound using
motion sensors. Both Medium-based and Aerial-based eavesdropping methods are leveraging the vibration effect
to extract the sound information. Reflection-based eavesdropping means that a tag does not vibrate itself, but
instead it is affected by the vibration of a nearby object, e.g., a cup of water.
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Online meeting. One possible attack scenario is that the victim is using a loudspeaker to discuss in the online
meeting, which is frequently used during the COVID-19 period. The adversary can leverage the surrounding
RFID tags to eavesdrop the sound played by the loudspeaker. As a result, the sensitive information talked during
the online meeting can be obtained by the adversary, which may threat the personal life and property safety.

Voice assistant system.With the success of AI technique in the speech recognition, intelligent voice assistant
systems, e.g., Google Home, Amazon Echo Dot, are widely used due to their convenience. The voice assistants may
replay the messages which includes some private information, e.g., Google Home can remember the passwords
or social security number with the ‘Remember’ function and replays them when needed. Such replayed sounds
from the loudspeaker open up the possibility of the adversary eavesdropping on the private information.

3 FEASIBILITY STUDY
In this section, we use several experiments to study the feasibility of extracting the sound vibrations via RFID
tags. Particularly, we focus on the mono-tone sound vibration to study the sensitivity of the RFID tags, which
can be extended to the human voice.

3.1 COTS RFID Reader V.S. USRP Reader
We first compare the COTS RFID reader with the USRP reader in terms of sensing the tag vibration. We place
the tag in front of the loudspeaker, as shown in Figure 2(a). We study the impact of mono-tone sounds with
frequencies of 100Hz and 300Hz. By default, for the COTS ImpinJ Speedway 𝑅420 RFID reader [3], we have the
sampling rate of 228Hz; for the USRP reader based on open project [4], we have the sampling rate of 2MHz.
Observation 1: The USRP reader with higher sampling rate is more suitable for eavesdropping than the COTS

RFID reader.
For the COTS RFID reader, we can only detect the 100Hz sound from both the frequency domain and time

domain, i.e., the orange wave in Figure 2(b) and the orange peak in Figure 2(c). According to the Shannon’s
law [31], over 600Hz sampling rate is required to capture the 300Hz sound. Even if the compressive reading [40, 41]
can solve the mechanical vibration, it cannot sense the human voice, which has complicated frequency bands.
Therefore, we do not consider the compressive sensing and use the traditional FFT to measure the frequency
bands. For the USRP reader, even if the reader signal is much stronger than the tag signal, leading to the huge
signal noise, we can still observe the weak tag signals of 100Hz and 300Hz in the time domain and frequency
domain, i.e., the 100Hz red wave and 300Hz jitters in Figure 2(b), and the corresponding blue peaks in Figure 2(c).
Thus, when we focus on the human voice with complicated frequency bands, the USRP platform is more suitable
to capture the human voice than the COTS RFID readers.

3.2 Tag Movement V.S. Tag Vibration
Since the tag vibration can be regarded as a small tag movement, we next investigate how the physical-layer
signal changes with the tag movement by pushing the tag close to the antenna.

Observation 2: The tag movement leads to the wavy change in the time domain, and the rotation of signal vector
in the IQ plane.

As shown in Figure 3(a), when we push the tag close to the antennas from 1.5m to 1.3m, the signal amplitude
is changing as the cosine function. As shown in Figure 3(b), when we push the tag close to the antenna, the
signal rotates in the IQ plane, and the rotation center is not at the origin. It means that the received signal does
not change with the tag-antenna distance linearly. Moreover, two main circles are formed in this figure. In the
enlarged signal in the time domain of Figure 3(a), we can clearly see the QUERY and ACK commands from the
reader, as well as the RN16 response and EPC response from the tag. Comparing Figure 3(b) with Figure 3(a), two
circles in Figure 3(b) are caused by the changes of CW signals and tag backscattered signals, which correspond to
the OFF and ON states of tag modulation [13]. Note that when we push the tag about 20𝑐𝑚, which is about 1.23×
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Fig. 2. Signal analysis of USRP signal for vibration sensing.

of the half wave length of CW signals, the signal rotates about 1.23× circles. Since the tag vibration is a small tag
movement, the tag vibration leads to the small wavy change in the time domain, and small rotation of signal
vector in the IQ plane, which are used to build the model in Section 4.

3.3 Tag Vibration V.S. Diaphragm Vibration
Since both the tag and the diaphragm may vibrate due to the sound pressure, we conduct experiments to study
the different influences. Particularly, we remove the tag in front of the loudspeaker as shown in Figure 2(a) to
capture the diaphragm vibration from the CW signal.
Observation 3: The tag vibration captured by backscattered signals is much larger than the loudspeaker

diaphragm vibration captured by CW signals.
Comparing Figure 2(b) with Figure 3(c), when we remove the tag from the loudspeaker, the periodic patterns

without tags are distinctly reduced. Particularly, for the 100Hz sound, we can still observe the weak periodic
pattern in Figure 3(c), but the amplitude is much weaker than Figure 2(b). For the 300Hz sound, no periodic
pattern can be found in Figure 3(c) and Figure 3(d). The reason is that the metallic tag can backscatter more
RF-signals than the papery diaphragm. Thus, the attached tag can amplify the interference of the loudspeaker
through backscattering.

4 SYSTEM DESIGN
In this section, we introduce the principle of Tag-Bug by extracting the vibration of tag based on the signal model.
In particular, we propose to extract the sound from either the vibration effect or the reflection effect of the tag.
According to the sound extraction model, we design a new tag response mechanism, which can randomize the
tag responses and improve the sound quality.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2021.



Thru-the-wall Eavesdropping on Loudspeakers via RFID by Capturing Sub-mm Level Vibration • 0:7

0 0.5 1 1.5 2 2.5
Time (s)

0

0.1

0.2

0.3

0.4

0.5

A
m

pl
itu

de
QUERY

ACK

RN16 EPC

CW

(a) USRP signal components

ON

OFF/
CW

(b) Constellation of tag movement

0.1 0.11 0.12 0.13 0.14
Time (s)

0.615

0.62

A
m

pl
itu

de USRP-100Hz

0.1 0.11 0.12 0.13 0.14
Time (s)

0.615

0.62

A
m

pl
itu

de

USRP-300Hz

(c) Amplitude of USRP signal

50 100 150
Frequency (Hz)

0

1

2

FF
T

USRP-100Hz

250 300 350
Frequency (Hz)

0

0.5

1

FF
T

USRP-300Hz

(d) Frequency analysis of raw signal

Fig. 3. Principle analysis of vibration sensing from IQ plain.

T
X

R
X

Tag
displacement

Environment

CW signal
Mu
lti-p
ath

Backsca
ttered si

gnal

Leakage
signal

Environment
(a) Signal components in RFID

O

𝑆!

𝑆" 𝑆#

𝑆$

Signal changes
due to movement

In-phase

Q
ua
dr
at
ur
e

(b) Signal in the IQ plane

Fig. 4. Transmission model in RFID system.

4.1 Transmitting Model
Uplink. In RFID systems, the transmitting antenna TX sends the CW signal to activate the tag as shown in
Figure 4(a). Due to the interference of multi-path effect, the signal reflected from the environment also arrives at
the tag together with the CW signal:

𝑆𝑡𝑎𝑔 = 𝑆𝑇𝑋 (ℎ𝑑 + ℎ𝐸). (1)
Here, 𝑆𝑡𝑎𝑔 indicates the signal received by the tag, 𝑆𝑇𝑋 is the CW signal sent by the TX antenna, ℎ𝑑 is the signal
attenuation due to the transmitting distance and ℎ𝐸 is the signal attenuation due to the multi-path effect of the
environment. Particularly, in an ideal channel model [13], ℎ𝑑 can be calculated as ℎ𝑑 = 1

𝑑
𝑒 j𝜃𝑑 , where 𝑑 is the

distance between the TX antenna and the tag, j is the imaginary number. 𝜃𝑑 is the phase calculated from distance
𝑑 and wave length 𝜆, as:

𝜃𝑑 = 2𝜋 𝑑
𝜆

mod 2𝜋. (2)

ℎ𝐸 is related to distance 𝑑 and the transmitting environment in principle.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2021.



0:8 • Chuyu Wang, Lei Xie, Yuancan Lin, Wei Wang, Yingying Chen, Yanling Bu, Kai Zhang, and Sanglu Lu

Downlink. After the tag receives the signal, the tag backscatters the signal with FM0 or Miller modulations,
which encodes the binary bits with ON and OFF states [13]. For the OFF state, the tag backscatters all the CW signal,
which has a small amplitude. Therefore, the signal received by the reader is the combination of the backscattered
signal from tag 𝑆𝑡𝑎𝑔 (ℎ𝑑′ + ℎ𝐸′) and the leakage signal from reader 𝑆𝑇𝑋ℎ𝐿 :

𝑆𝑅𝑋,0 = 𝑆𝑇𝑋ℎ𝐿 + 𝑆𝑡𝑎𝑔 (ℎ𝑑′ + ℎ𝐸′) = 𝑆𝑇𝑋 (ℎ𝐿 + ℎ𝑑ℎ𝑑′ + ℎ𝐸,𝑑 ), (3)

where ℎ𝑑′ is the signal attenuation due to the downlink transmitting distance, ℎ𝐸′ indicates the environment
influence in the backscattered channel. For simplicity, we use ℎ𝐸,𝑑 to represent the overall signal attenuation due
to the environment, which is also related to the distance 𝑑 .

For the ON state, the tag backscatters a large amplitude signal by changing the state of tag antenna. Thus, the
received signal is:

𝑆𝑅𝑋,1 = 𝑆𝑇𝑋ℎ𝐿 + 𝑆𝑡𝑎𝑔 (ℎ𝑑′ + ℎ𝐸′)ℎ1 = 𝑆𝑇𝑋 (ℎ𝐿 + ℎ1ℎ𝑑ℎ𝑑′ + ℎ′
𝐸,𝑑

), (4)

where ℎ1 is the modulation gain of the tag, and ℎ′
𝐸,𝑑

is the overall signal attenuation due to the environment for
the ON state. In RFID systems, the tag changes the antenna capacitance to modulate the CW signal during the
backscattering, so that ℎ1 is usually regarded as the signal enhancement. Particularly, because the multi-path
effect from the environment is relative small, we thus omit the influence of ℎ1 and regard ℎ′

𝐸,𝑑
approximates

to ℎ𝐸,𝑑 . As a result, the signal received by the reader can be divided into three parts: the leakage signal 𝑆𝐿 , the
multi-path signal 𝑆𝐸 and the backscattered signal 𝑆0 or 𝑆1, where

𝑆𝐿 = 𝑆𝑇𝑋ℎ𝐿,

𝑆𝐸 = 𝑆𝑇𝑋ℎ𝐸,𝑑 ,

𝑆0 = 𝑆𝑇𝑋ℎ𝑑ℎ𝑑′, 𝑆1 = 𝑆𝑇𝑋ℎ𝑑ℎ𝑑′ℎ1.

(5)

When the TX antenna and RX antenna are placed close to each other and the tag is relatively far from the two
antennas, we regard 𝑑 ′ ≈ 𝑑 . Thus, both 𝑆0 and 𝑆1 are proportional to ℎ𝑑ℎ𝑑′ = ℎ2

𝑑
= 1

𝑑2 𝑒
j2𝜃𝑑 , indicating that the

phase change is 2𝜋 2𝑑
𝜆
. Such phase change is compatible with the results in Figure 3(b), where 20cm movement

leads to 2.45𝜋 radians phase change.
IQ plane analysis. Figure 4(b) presents the signal model in the IQ plane. The transmitting distance 𝑑\𝑑 ′

changes with the tag movement, leading to the change of both the multi-path signal 𝑆𝐸 and the backscattered
signal 𝑆0\𝑆1. Thus, the phases of 𝑆𝐸 and 𝑆0\𝑆1 get changed, resulting in the rotation of the corresponding signals.
The phase change of 𝑆0\𝑆1 is caused by the signal attenuation ℎ2

𝑑
, whose phase change is 2𝜋 2𝑑

𝜆
. Therefore, both

𝑆0 and 𝑆1 rotate with the transmitting distance 𝑑 , which leads to two arcs in the IQ plane. Since 𝑆𝐸 is usually
static, we omit it for simplicity. Such results exactly explain the signal change in Figure 3(b).

4.2 Sound Extraction from Vibration Effect
Theoretically, the vibration effect of the tag due to the sound can lead to the variation of the transmitting distance
as 𝑑 = 𝑑0 + 𝑓 (𝑡, 𝑑𝑣). Here, 𝑑0 is the average tag-antenna distance, and 𝑓 (𝑡, 𝑑𝑣) is the distance variation related to
time 𝑡 and vibration amplitude 𝑑𝑣 . For the mono-tone sound with the frequency 𝜙 , 𝑓 (𝑡, 𝑑𝑣) = 𝑑𝑣 cos(2𝜋𝜙𝑡), which
can be extended to any complicated sound with multiple tones. For simplicity, we introduce the algorithm with
mono tone sound. In an ideal model, such tag vibration can be directly captured by the received signals 𝑆0 and 𝑆1.
However, since the leakage signal 𝑆𝐿 is much stronger than the backscattered signal 𝑆0 and 𝑆1, the small changes
of 𝑆0 and 𝑆1 will not remarkably affect the received signal 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1. Figure 5(a) plots the vibration-based
signal change by omitting 𝑆𝐸 . Both 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1 slightly rotate, and the raw phase change is much small due
to the strong leakage signal. Moreover, sub-mm level vibration of the tag due to the sound can be easily drowned
by the ambient noise. Thus, we need to amplify the vibration effect by removing the strong interference.
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Fig. 5. Vibration extraction mechanisms.

Naïve Normalization. The direct way is to centralize 𝑆𝑅𝑋,1 by subtracting the average value 𝑆𝑅𝑋,1, as shown
in Figure 5(a). The phase variance range can be amplified to [0, 2𝜋]. However, in the real system, 𝑆𝑅𝑋,1 contains
the large ambient noise, and such subtracting can import the additional noise signal. Thus, both the vibration
effect and the signal noise are amplified.

To efficiently amplify the vibration effect, our basic idea is to extract the backscattered signals, which are related
to the tag displacement. If we can obtain the backscattered signal 𝑆0 or 𝑆1, the corresponding phase change can
indicate the tag displacement. However, it is difficult to measure the leakage signal 𝑆𝐿 and the environment signal
𝑆𝐸 , thus, we cannot individually get either 𝑆0 or 𝑆1 by referring to 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1. Fortunately, since both 𝑆𝐿 and
𝑆𝐸 are static in most scenarios, by regarding ℎ′

𝐸,𝑑
approximates to ℎ𝐸,𝑑 , we can remove 𝑆𝐿 and 𝑆𝐸 from Eq. (4) and

Eq. (3) as:
Δ𝑆𝑅𝑋 = 𝑆𝑅𝑋,1 − 𝑆𝑅𝑋,0 ≈ 𝑆𝑇𝑋 (ℎ1 − 1)ℎ2

𝑑
. (6)

We call it Modulated Signal Difference (MSD). Here, only ℎ𝑑 changes with the tag vibration in principle, meaning
that the vibration can be extracted from the MSD phase.
However, in any snapshot, only one of 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1 can be received. Therefore, we cannot get the MSD

Δ𝑆𝑅𝑋 in reality. For a static tag, we can use 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1 to calculate the MSD Δ𝑆𝑅𝑋 , which is called Static MSD.
But for a vibrating tag, both 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1 get changed even during one tag response. Therefore, we cannot
simply calculate the MSD from the average value. To address the problem, two kinds of cancellation solutions are
considered to extract the MSD efficiently.

Instantaneous MSD. The first solution is the cancellation based on adjacent samples. As shown in Figure 5(b),
since 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1 cannot be collected in one snapshot, we use adjacent samples to approximate uncollected
samples, which is called instantaneous MSD. It is similar to the standard RFID channel estimation, but the
traditional estimation targets on a relatively stable tag while we focus on a vibrating tag. As shown in Figure 5(b),
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Fig. 6. Influence of enhanced multi-path effect.

due to the large signal noise around the signal edge, adjacent samples should be selected from the stable part of
the square wave, and thus there is a longer time interval between adjacent samples. Such interval may not affect
a stable tag, but can introduce the large noise for the high-frequency vibration.
Amplified MSD. The second solution is the cancellation based on 𝑆𝑅𝑋,0 within a small time window. The

basic idea is to use 𝑆𝑅𝑋,0 to replace 𝑆𝑅𝑋,0 for cancellation. Due to the vibration influence, 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1 change
with the time due to the vibration. Since the tag is vibrating at a fixed position during the time window, 𝑆𝑅𝑋,0 can
be roughly regarded as 𝑆𝑅𝑋,0 when the tag is static at its original position. As 𝑆𝑅𝑋,0 is an average value, there is
no time interval between 𝑆𝑅𝑋,1 and 𝑆𝑅𝑋,0, and the vibration feature is extracted as:

Δ𝑆 ′𝑅𝑋 = 𝑆𝑅𝑋,1 − 𝑆𝑅𝑋,0 ≈ 𝑆𝑇𝑋 (ℎ1ℎ2𝑑 − ℎ2
𝑑
). (7)

Here, the time variation of 𝑆𝑅𝑋,0 is removed while 𝑆𝑅𝑋,1 still contains the time variation signal due to the sound.
Thus, Eq. (7) can be used to derive the vibration.

Compared with the static MSD, Eq. (7) omits the variation of 𝑆0 and focuses on the variation of 𝑆1 to extract
the vibration. It is related to both the transmitting distance 𝑑 and the modulation attenuation ℎ1. Since ℎ1 is the
modulation factor caused by the impedance change of the tag antenna, the amplitude of ℎ1 is greater than 1.
Hence, Eq. (7) can amplify the MSD phase by using 𝑆𝑅𝑋,0, which is called the amplified MSD. Figure 5(c) illustrates
the amplification principle. By connecting the end of 𝑆𝐿 and 𝑆𝑅𝑋,0, according to the exterior angle theorem of a
triangle, the phase change of the amplified MSD 𝜃𝑎 , i.e., summation of the two exterior angles, is larger than the
phase change of the static MSD 𝜃𝑠 , i.e., the summation of the two remote interior angles.
We use the 300Hz mono-tone sound to test the performance of different solutions as shown in Figure 5(d).

For the raw phase of received signals, the 300Hz sound is buried by the 610Hz noise, which is caused by the
measurement noise of the hardware. For the cancellation based on adjacent samples, the noise spreads over the
frequency band, due to the large interval between adjacent samples. For the cancellation based on 𝑆𝑅𝑋,1, although
we can get the clear peak at 300Hz, the ambient noise is also amplified, leading to several noise peaks. For the
cancellation based on 𝑆𝑅𝑋,0, we detect frequency peaks at 300Hz, 600Hz and 900Hz, caused by harmonic signals.
Thus, the amplified MSD is better for the vibration extraction, which is also suitable for the extraction of the
sound with multiple tones.

4.3 Sound Extraction from Reflection Effect
Next we demonstrate how to extract the sound vibration considering the reflection effect. Currently, the sound
can be extracted from the vibration effect by attaching the tag on the vibrating objects in some situations. When
the tag vibrates on materials such as liquid, the tag signal could be seriously absorbed and the vibration signal is
drowned by the ambient noise. Nevertheless, these materials are more easily vibrated by the sound than the tags.
Therefore, by deploying the RFID tag close to the vibration-sensitive materials, even if the tag itself cannot be
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effectively vibrated, it can still perceive the vibration via the CW signal reflected from the surrounding vibrating
materials. We call it reflection effect.

Usually, received signals contain the leakage signal 𝑆𝐿 , the tag backscattered signal 𝑆𝑡𝑎𝑔 and the environment
noise 𝑆𝐸 :

𝑆𝑅𝑋 = 𝑆𝐿 + 𝑆𝑡𝑎𝑔 + 𝑆𝐸, 𝑆𝑡𝑎𝑔 = 𝑆0 or 𝑆1 . (8)
Particularly, the environment noise can be further divided into several reflection signals 𝑆𝐵,𝑖 and the thermal
noise 𝑆𝑁 :

𝑆𝐸 = 𝑆𝑁 +
M∑︁
𝑖=1

𝑆𝐵,𝑖 , (9)

whereM is the number of reflection signals. Normally, the reflection signals 𝑆𝐵,𝑖 are usually static and weaker
than the tag signal 𝑆𝑡𝑎𝑔. However, if the reflection object resonates together by the sound, the vibration of the
object will enhance the reflection signal.

We can divide the environment noise 𝑆𝐸 into the static part 𝑆𝐸,𝑠 and the vibration part 𝑆𝐸,𝑣 . According to Eq. (7),
we can cancel the static part and have:

Δ𝑆 ′′𝑅𝑋 = 𝑆𝑅𝑋,1 − 𝑆𝑅𝑋,0 ≈ 𝑆𝑇𝑋 (ℎ1ℎ2𝑑 − ℎ2
𝑑
) + (𝑆𝐸,𝑣 − 𝑆𝐸,𝑣). (10)

Comparing with Eq. (7), we add another time variation part 𝑆𝐸,𝑣 caused by the reflection object, and Δ𝑆 ′′
𝑅𝑋

can
be used to sense the sound. Basically, the variation of 𝑆𝐸,𝑣 is captured by the nearby tag, such that, the received
signals 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1 contain the reflection effect besides the vibration effect. Thus, Eq. (10) is the general case
of Eq. (7).

We validate the model via experiments. We consider 4 kinds of setup: A. a single tag, B. a single bottle of water,
C. a tag close to a bottle of water, D. a tag attached on a bottle of water. Instead of using mono-tone sound, we
use the multi-tone sound with frequencies of 305Hz and 440Hz. As shown in Figure 6, setup A can achieve the
FFT values of 0.27 and 0.1, respectively. Moreover, setup C achieves larger FFT values, i.e., 0.41 and 0.15, which
benefits from the reflection effect of the water vibration. But the FFT values of setup B and D are all below 0.01,
meaning that they cannot sense the vibration. Thus, it is sometimes difficult to perceive the sound directly from
the vibrating object itself. But the reflecting signal of vibrating object can be captured by the receiver through
the tag backscattering. Hence, the reflection effect improves the capability of the vibration detection.

4.4 Tag Response Mechanisms
We next arrange tag responses based on the EPC C1G2 standard [2] to reduce the influence of the reader signal.
In RFID systems, the reader uses the Framed-Slotted-ALOHA (FSA) anti-collision protocol to communicate with
the RFID tags. Thus, the reader signal is alternately received with the tag signal by the receiving antenna RX
as shown in Figure 3(a). According to the vibration model, since only the backscattered signal can be used for
sensing, the reader signal should be removed from the time domain. Traditionally, the removed reader signal can
be well interpolated and the reader signal does not affect the perceiving. But if each frame has the same size,
the QUERY command appears periodically, leading to the large noise around the corresponding periods even the
removed reader signal is interpolated.

Therefore, it is essential to reduce the interference of the reader signal. The basic idea is to import random factors
for the tag response so that reader commands are randomly distributed. To break the periodicity, we first propose
Random Retransmission, inspired by literatures [5, 20]. Different from continuously retransmitting EPC commands,
we require the tag to randomly retransmit EPC commands. Thus, the length of each query cycle is randomly
distributed according to retransmission numbers, and the periodicity problem is resolved. The second mechanism
is Random Frame-size, which sets the frame size randomly. Based on the EPC C1G2 standard, we can modify
the frame-size by setting Q parameter. Therefore, by randomly setting the frame-size, we can also solve the
periodicity problem of reader commands.
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Both Random Retransmission and Random Frame-size can break the periodicity problem of reader commands in
principle, but they focus on randomizing different signals. Random Retransmission mechanism retransmits the
EPC repeatedly, meaning that both 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1 are collected. But there are large modulation noises around
the signal edges between 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1. Random Frame-size mechanism retransmits the CW repeatedly, meaning
that more continuous CW samples, i.e., 𝑆𝑅𝑋,0, are collected. But they cannot be used to calculate the MSD and
thus reduce the time resolution for the backscattered signal. Since Random Retransmission provides 𝑆𝑅𝑋,0 and
𝑆𝑅𝑋,1, and Random Frame-size provides continuous 𝑆𝑅𝑋,0 to capture the vibration, a hybrid method of the two
mechanisms is used to improve the perceiving performance.

5 SYSTEM IMPLEMENTATION
Tag-Bug perceives the sound of the loudspeaker based on the changing backscattered RF-signal of the tag.
Specifically, the sound from the loudspeaker vibrates the tag or nearby objects, and such tiny vibration can be
captured via either the vibration effect and the reflection effect. The implementation of Tag-Bug consists of five
main components: 1) Sampling randomization first breaks the periodic pattern of reader signals by randomizing
the tag retransmission and the frame size. 2) Vibration amplification amplifies the vibration influence on the
received signal by making the vibration signal orthogonal to the noise. 3) Vibration feature extraction then
separates the tag response from the received signal and extracts the amplified MSD as the vibration feature from
the tag response. 4) Signal filter filters the signal noise based on the frequency analysis. 5) CGAN based sound
refinement recovers the high-frequency band by referring to the low-frequency band to improve the quality of
the recovered human voice.

5.1 Sampling Randomization
Based on Section 4.4, we show the hybrid method of tag response mechanism. The basic idea is that the
tag randomly retransmits the EPC command and the reader randomly sets the frame size. For the Random
Retransmission, we let the tag retransmit its EPC command with 50% probability. For the Random Frame-size, we
randomly set the frame-size to 1 or 2 with 50% probability. The probability settings guarantee that we import the
randomization, and meanwhile avoid long-term EPC retransmission and the continuous empty slots. Thus, we
randomize the tag response in both the query-level and slot-level to solve the period problem of reader signal.

5.2 Vibration Amplification
Even though the vibration is captured by the backscattered signal, the environment noise can usually overwhelm
the tiny signal changes due to the sound wave. Thus, it is essential to derive the noise distribution and amplify
the influence of the vibration caused by the sound on the received signal.
Based on our empirical study, the phase variance of the USRP platform is much larger than the amplitude

variance, due to the hardware noise. Figure 7(a) shows the signal constellation of a static tag. The arc-shaped
distribution of signal samples is caused by the phase variance, while the actual distribution should be one point in
principle. Figure 7(b) shows the interference of the phase noise on the signal changes due to vibration, where the
signal changes are almost drowned by the phase noise. To reduce the influence of the phase noise, our basic idea
is to make the vibration-based signal change orthogonal to the signal noise by adjusting the transmitting distance as
shown in Figure 7(b). According to Figure 3(b), the signal changes due to the tag movement form a circle, and
the radial direction is indicated by the line between 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1. In Figure 7(a), the signal change due to the
vibration is orthogonal to the radial direction 𝐴𝐵, where 𝐴 is the center of 𝑆𝑅𝑋,0 samples, 𝐵 is the center of 𝑆𝑅𝑋,1
samples. Besides, the signal noise due to the phase variance is orthogonal to𝑂𝐴. Therefore, if𝐴𝐵 is orthogonal to
𝑂𝐴, the vibration-based signal change is orthogonal to the signal noise and the influence of the phase variance is
reduced. According to literature [33], ∠𝑂𝐴𝐵 is related to the transmitting distance, which is the same as 𝜃𝑑 in Eq.
(2). Therefore, we can vary the transmitting distance such that ∠𝑂𝐴𝐵, i.e., 𝜃𝑑 , is close to 𝜋/2. In the eavesdropping
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scenario, we can use a mobile-framework or manually to move reader antennas towards the tag to adjust 𝜃𝑑 . As a
result, the vibration-based signal change due to the sound is orthogonal to the phase noise, and the influence of
the phase noise is thus reduced.

5.3 Vibration Feature Extraction
We next extract the vibration features from the received signals. We first segment the reader signal and the tag
signal, and separate 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1 from the tag signal. Then, we can extract the MSD feature Δ𝑆 ′′

𝑅𝑋
based on Eq.

(10). For the signal separation, the basic idea is that the reader signal has the larger energy variance compared
with the tag signal. Therefore, we leverage a sliding-window to calculate the variance of the received signal. As
shown in Figure 8(a), the variance of tag signal is very small because it is modulated on the CW signal, while the
reader signal has much larger variance. Then, we can separate the tag signal based on the small signal variance.

After obtaining the tag signal, we further extract 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1 from the backscattered signal. The basic idea
is to detect signal edges and separate the signal according to the signal edges. When the tag modulates the signal
by changing its state between ON and OFF, the received signals vary between 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1. Therefore, by
leveraging the signal edges, we can detect 𝑆𝑅𝑋,0 and 𝑆𝑅𝑋,1. Finally, we can calculate the vibration features MSD
based on Eq. (10).

5.4 Signal Filter
The basic idea to recover the sound from the vibration is to analyze the signal extracted from the amplified MSD
in the frequency domain, and further filter the ambient noise. Since the MSD features extracted based on either
the vibration effect or the reflection effect are based on the signal segments of tag backscattering and the signal
segments of reader command are useless in the sound extraction, we need to firstly handle the useless reader
signal. In RFID system, the reader signal is relatively shorter compared with the tag signal, e.g., RN16 command
from the tag is 4.5 times longer than EPC command from the reader. Thus, we can remove the reader signal
and the sound will not be distorted significantly. Here, the MSD features are not uniformly sampled due to the
removed reader signal. Then, we further resample all the features with the spline interpolation, which can fill the
gap of the reader signal based on the trend of MSD features. As shown in Figure 8(b), after the interpolation,
the periodic feature can be roughly detected from the signal wave. After the interpolation, we further filter
the signal via the frequency analysis. Typically, the main frequency bands of human voice are between 100Hz
and 1000Hz [32]. Hence, we use a Butterworth filter to remove the out-of-band signal. In addition to the high
frequency noise, it also removes the low frequency noise caused by ambient human movements.

For the noise signal inside the frequency band of the human speech, we design a Wiener filter [29] to further
remove it. The basic idea is that the noise signal is usually stable during a short period, thus we can get the
noise signal when the loudspeaker is not playing, and then remove the noise when the loudspeaker is playing.
We design the Wiener filter based on the known signal, i.e., the ambient noise, and then estimate the vibration
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signal, by removing the known signal from the received signal. As shown in Figure 8(c), after we remove the
ambient environmental noise based on the Wiener Filter, the 300Hz signal due to vibration is much clearer in the
frequency domain. Therefore, it indicates that the Wiener Filter can efficiently reduce the ambient noise.

5.5 CGAN based Sound Refinement
Even if we extract the sound based on either the vibration effect or the reflection effect, the frequency band is
incomplete due to the inherent physical characteristics of RFID tags. Particularly, since the low-frequency sound
has larger energy than the high-frequency sound to vibrate the tags, the sound extracted from the RFID tags
have clear low-frequency band and relatively vague high-frequency band. Figure 9(a) compares the frequency
band between the original sound and the extracted sound from RFID tags in the spectrogram. For the human
voice, the low-frequency band is the fundamental frequency, while the high-frequency band is the harmonic
frequency. Thus, we need to recover harmonic frequency band based on the fundamental frequency.

To solve the problem, we leverage a Conditional Generative Adversarial Network (CGAN) [27] to generate the
whole frequency coefficients 𝑌 conditional on the fundamental frequency coefficient 𝑋 . As shown in Figure 9(b),
we take 𝑋 as the input and generate the spectrogram from the fundamental frequency of 𝑋 . Particularly, we
divide the sound signals into separate word of 0.5s window length, and then calculate the spectrogram figure with
Short-Time Fourier Transform (STFT). For the generator, we use a U-Net [28] to recover the whole frequency band.
It firstly downsamples the original spectrogram with 4 convolution layers, and then upsamples the features to
the original size with another 4 convolution layers. In the upsample part, we use skip connections to concatenate
the input of upsample layer with the corresponding cropped features, which can combine both the high-level
and low-level features for generation. For the discriminator, we use a traditional CNN model with 3 hidden
convolution layers to judge the real spectrogram. We take the filtered sound extracted from RF-signals as the
input of CGAN, and use the original sound recorded as the real spectrogram. We have generated more than 3000
minutes of sound files, where 80% of the sound files are used to train the CGAN model, and the rest data is used
to test the model. By training the CGAN model, we can automatically generate the whole frequency band and
obtain the full-frequency band from the extracted sound as shown in Figure 9(a). Finally, we use inverse STFT to
transform the spectrogram to achieve better human voice. For the refined sounds, traditional methods such as
the neural networks can be further used to recognize them. We omit this part and train our own LeNet-5 [18] to
recognize the human voice, which are later introduced in Section 7.

6 PERFORMANCE EVALUATION OF MONO-TONE SOUNDS
6.1 Experiment Settings
To evaluate the sound quality of the extracted sound, we first quantitatively analyze the Signal-Noise-Ratio (SNR)
when eavesdropping the mono-tone sound. We implement Tag-Bug based on the USRP N210 platform with two
Laird 𝑆9028𝑃𝐶𝐿 directional antennas and an SBX Daughter-board according to the open source project [1], which
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Fig. 9. Sound refinement based on CGAN.

works at a center frequency of 920MHz. During the whole experiments, the sensing tag is vertically deployed on
the Express Package with a default tag-antenna distance of 1m. The Express Package is filled with textile fabrics,
which has a total weight of 0.65𝑘𝑔. We vary different kinds of parameters to evaluate the performance, including
transmitting environment, sound characteristic and hardware, which are shown in Table 1.
Transmission environment.We examine the influence of different transmission environment by varying

the tag-antenna transmitting distance, the tag-loudspeaker distance. For the transmitting distance, we vary the
distance from 1m to 4m. For the tag-loudspeaker distance, we vary the distance from 10cm to 200cm. By default,
the transmitting distance is set to 1m and the tag-loudspeaker distance is set to 20cm.
Sound characteristics. We vary the frequency and the loudness of the sound to evaluate the accuracy of

the extracted vibration from RFID. Particularly, we vary the frequency of the mono-tone sound ranging from
80Hz to 1000Hz, which can cover the main frequency band of the human speech. For the loudness, we deploy a
decibel meter beside the RX antenna to measure it. To evaluate the sensitivity of transient response, we vary the
duration of each monotone sound from 10ms to 200ms. By default, we play the 261Hz mono-tone sound, with
75dB loudness.

Hardwares. We evaluate the performance by varying loudspeakers, RFID tags and everyday objects attached
with RFID tags. Particularly, we consider 5 different loudspeakers to play the sound, i.e., Edifier 𝑅1700𝐵𝑇
loudspeaker (Edifier), JBL 𝐶𝑙𝑖𝑝3 mini-speaker (JBL), Thinkpad laptop (Thinkpad), Anker speaker (Anker) and
Huawei bluetooth speaker (HW). Besides, we consider 4 different RFID tags, including 𝐴𝑍 -9640, 𝐴𝑍 -𝑈 73, 𝐸51
and 𝐸𝑅62. Moreover, we attach the tags on different objects, i.e., package of Playing Card (PC), Plastic Bag (PB),

Table 1. Evaluation parameters

Parameter name Parameter range Default settings
Tag-antenna transmitting distance 1 - 4 m 1 m
Tag-loudspeaker distance 10 - 200 cm 20 cm
Mono-tone frequency 80 - 1000 Hz 440 Hz
Sound loudness 60 - 84 dB 80 dB
Mono-tone duration 10 - 200 ms 200 ms
Loudspeakers Edifier, JBL, Think pad, Anker, Huawei Edifier
RFID tags E51, ER62, AZ-9640, AZ-U73 E51
Objects Playing Card, Plastic Bag, Express Package

Express Package, Airtight food Container
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Express Package (EP) and Airtight food Container (AC). By default, we use the loudspeaker Edifier with the tag
𝐴𝑍 -9640, attached on the express package.

Metrics. For the quantitative analysis of mono-tone sound, we use the Signal-Noise-Ratio (SNR) to evaluate
the eavesdropping performance as 𝑆𝑁𝑅 = 10 log 𝐸𝑆

𝐸𝑁
, where 𝐸𝑆 is the power of the sound signal and 𝐸𝑁 is the

power of the noise. Since mono-tone sound has one typical frequency, given 𝑃 (𝑓 ) as the frequency, we modify
the frequency as: {

𝑃 (𝑖) = 𝑃 (𝑖)/5, 𝑖 𝑓 𝑃 (𝑖) < max(𝑃 (𝑓 ))/2,
𝑃 (𝑖) = 𝑃 (𝑖), 𝑖 𝑓 𝑃 (𝑖) ≥ max(𝑃 (𝑓 ))/2. (11)

Finally, we calculate the improved SNR accordingly.

6.2 Impact of Transmission Environment
Tag-Bug can achieve over 4dB SNR when the transmitting distance is over 2m in the Line-Of-Sight (LOS) transmission.
As shown in Figure 11(a), for the transmitting distance, the SNR decreases with the transmitting distance, because
the propagation of the RF-signal may import the larger noise and the vibration signal also fades away during the
propagation. As a result, when the transmitting distance increases, the SNR value decreases. Anyway, when the
distance is larger than 2m, we can still achieve 4dB SNR.
Tag-Bug can achieve 2.6dB SNR when the tag-loudspeaker distance is 100cm. For the tag-loudspeaker distance,

since it is difficult to sense the sound from the vibration effect when the tag-loudspeaker distance is larger than
50cm, we evaluate the impact of the tag-loudspeaker distance based on the reflection effect, i.e., sensing the
sound by deploying the tag beside a bottle of water. As shown in Figure 11(b), the SNR slightly decreases with
the increasing tag-loudspeaker distance, since the sound power reduces along with the large tag-loudspeaker
distance. Even the tag-loudspeaker distance is as long as 100cm, Tag-Bug can still achieve 2.6dB SNR. Moreover,
Tag-Bug can still perceive the sound vibration when the tag-loudspeaker distance is as far as 2𝑚.

6.3 Impact of Sound Characteristics
Tag-Bug can achieve 2.3dB average SNR when eavesdropping mono-tone sounds with different frequencies, and the
highest SNR is up to 14.7dB. We first evaluate the impact of different mono-tone frequencies. We focus on the
mono-tone sound with the frequency ranging from 80Hz to 1000Hz, which can usually cover the frequency of

AC
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Fig. 10. Experiment setups.
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Fig. 11. Performance of different transmitting environments.

the human speech. As shown in Figure 11(c), the lower frequency sound has the larger SNR value, while the
higher frequency sound has the smaller SNR. Particularly, for the frequency lower than 200Hz, the SNR is larger
than 0dB, while the SNR decreases to −10dB when the frequency is larger than 600Hz. It is mainly caused by
two folds. First, the loudspeaker has different gains to the sounds with different frequencies, due to the physical
imperfection. Second, the low-frequency sounds suffer from the less attenuation than the high-frequency sounds
during the propagation, leading to the larger power to vibrate the tags and the nearby objects..

Tag-Bug can still achieve 1.8dB SNR when the loudness of sound reduces below 67dB. Next, we manually vary the
loudspeaker volume and use a decibel meter to record the loudness. It is as expected that the louder sound leads
to the larger SNR value in Figure 11(d). Particularly, we can still perceive the sound vibration even the loudness
is 60dB. It indicates the possibility to eavesdrop in different scenarios. Moreover, the improved SNR is 8dB larger
than the raw SNR, indicating that we can efficiently eavesdrop the sound.
Tag-Bug can efficiently capture the sound vibration of monotone if the sound duration is longer than 50ms. To

evaluate the transient response on the sound vibration, we further vary the duration of each 261Hz monotone

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2021.



0:18 • Chuyu Wang, Lei Xie, Yuancan Lin, Wei Wang, Yingying Chen, Yanling Bu, Kai Zhang, and Sanglu Lu

sound from 10ms to 200ms, and extract the sound in the default scenario. Figure 11(e) shows the spectrogram of
all the 20 kinds of sounds. We find Tag-Bug can always detect the transient sound pulse, and achieves a stable
extraction performance when the duration is longer than 50ms. Besides, we also find the resonance signal of the
transient sound, especially when the duration is longer than 100ms. However, they all achieve an average raw
SNR of over 3.21dB for the 261Hz monotone sound. It indicates that Tag-Bug can efficiently capture the sound
vibration although it is relatively short.

6.4 Impact of Hardware
Tag-Bug achieves more than 3dB SNR for the eavesdropping even on mini speakers. As shown in Figure 11(f), we
compare the SNR values among five different loudspeakers. The Edifier and JBL loudspeakers are the easiest
to eavesdrop, due to the large gain of the loudspeaker. As for the laptop, since the embedded loudspeakers
are designed for the personal usage, the gain is usually designed to be small. For the Huawei and Anker mini
loudspeakers, they have more than 3dB SNR, indicating the efficiency of Tag-Bug in eavesdropping different
kinds of loudspeakers.

Tag-Bug can leverage different tags for the eavesdropping. As shown in Figure 11(g), the four types of tags have
similar SNR values. Particularly, AZ-9640 tag has the best performance, because the tag antenna is larger and the
backscattered signals have less noises compared with other tags.
Tag-Bug can achieve up to 18dB SNR when the tag is attached on the plastic bag. As shown in Figure 11(h), we

compare the eavesdropping performance by sticking the tag on four everyday objects, i.e., package of Playing
Card (PC), Plastic Bag (PB), Express Package (EP) and Airtight food Container (AC). We find that the plastic bag
has the best performance, because it is lighter than the other three objects and thus easy to be vibrated by the
sound. Since the plastic bag can be any package bag from the market, which is easily to be overlooked, it also
indicates the high threat of the eavesdropping. The other three objects have similar performances, because they
are all rigid-bodies, and only partial surface is vibrated by the sound. Therefore, the sound cannot lead to the
smaller vibration of the objects compared with the plastic bag, leading to lower SNR.

6.5 Impact of Continuous Sounds
Tag-Bug can efficiently recover the continuous sounds in time-series.We evaluate the performance of Tag-Bug on
eavesdropping the continuous sounds. The loudspeaker plays a nursery rhyme Frère Jacques, which consists of a
sequence of mono-tone sounds with different frequencies. As shown in Figure 11(i), we can clearly see each note
corresponding to “do-re-mi-do-...”. Since we reduce the amplitude to 1/2 from 5s to 9s, we can also observe such
volume change in Figure 11(i). It indicates that Tag-Bug can derive both the frequency and the relative amplitude
during the eavesdropping.

7 PERFORMANCE EVALUATION OF HUMAN VOICE
We further use our system to eavesdrop the human voice, which is played by the loudspeaker with the default
setting. In comparison, we also eavesdrop the human voice in both the through-the-wall eavesdropping and
through-the-insulating-glass eavesdropping, which is compared with the free-space eavesdropping. In our
scenarios, we use either a 20cm-thick brick-wall or a 29mm-thick insulating-glass with three layers of glass to
separate the loudspeaker and the RFID reader as shown in Figure 10(b). Particularly, we focus on the numbers and
letters, which can be the main component of some private information, e.g., social security number or passwords,
etc.We invited 10 volunteers (8 males and 2 females) with IRB approval to record the human voice of 10 numbers
and 26 letters. Then we use the Edifier loudspeaker to play all the human voice and use Tag-Bug to eavesdrop the
sound in different scenarios.

We have generated 630 sound records for each number and letter to evaluate the recognition performance. We
propose two ways to evaluate the performance: 1) We calculate the correlation coefficient between the original
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Fig. 12. Performance of recognizing human voice.

sound and the eavesdropping sound to evaluate the similarity from the time domain. 2) We train two basic
LeNet-5 [18] to recognize the sound of numbers and letters based on the spectrogram, respectively.

In our experiment, we do not use a commercial speech recognition system, because the spectrogram captured
by Tag-Bug is different from the traditional sound records. Therefore, we train our own LeNet-5 for speech
recognition.Wemix the records of all the volunteers together and separate the data according to the eavesdropping
scenarios. Then we use 9/10 of the data to train the network and use the rest to test it. For a real adversary, other
efficient methods such as transfer learning can be used to improve the recognition accuracy, which is beyond the
scope of this paper.

7.1 Impact of Insulation between Reader and Loudspeaker
Tag-Bug can recognize the number with a macro averaged precision of 95.5% in the free-space and with a macro
averaged precision of 86.3% of through-the-brick-wall scenario and through-the-insulating-glass scenario.We further
use the class-wise averaged precision of spoken number recognition to evaluate the performance of the extracted
sound. As shown in Figure 12(a), Tag-Bug can accurately recognize the numbers with over 95% precision in the
free-space. Only 1 or 2 instances are incorrectly recognized out of all the 21 instances. Particularly, Tag-Bug can
accurately recognize number ‘2’ and ‘7’ with 100%. When we eavesdrop the sound through a 20cm-thick brick-wall,
we can still achieve an average precision of 85.2% in Figure 12(b). The recognition class-wise averaged precision
of all numbers are over 75%.

Besides, we further move to the soundproof room and eavesdrop the sound through the 29mm-thick insulating-
glass. As shown in Figure 12(c), we can still achieve an average precision of 87.5%. All the numbers can be
accurately recognized with over 80%. It indicates that the adversary can eavesdrop the user privacy through
the different kinds of insulation. Moreover, since we train a comprehensive LeNet-5 for all the users for speech
recognition, the speech related voice features can be efficiently captured by Tag-Bug for recognition, while the
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Fig. 13. Case study of eavesdropping daily conversation.

individual characteristics such as voice fingerprint are ignored by the network. To improve the performance
of speech recognition, advanced deep learning methods such as transfer learning can be used to make the
recognition network suitable for different scenarios.
To explain the reason for the high accuracy, we further examine the similarity between the original sound

played by the loudspeaker and the sound extracted by our system. The similarity is defined as the cross-correlation
between the extracted sounds and the original sounds. We calculate the similarity of both the sound directly
from the RFID tag and refined by the CGAN model. In comparison, we also use a smartphone to record the sound
and calculate the similarity. We examine the similarity in both the free-space (FS) and the insulation scenarios
(IS), including through the wall and the insulating glass. As shown in Figure 12(d), the CGAN can obviously
improve the similarity with over 50% and 10% for the FS and IS, respectively. As for the smartphone, it is only 17%
better than Tag-Bug for the FS. However, the smartphone is worse that Tag-Bug , whose similarity is only 38%
of Tag-Bug due to the insulation of the sound. Thus, Tag-Bug can achieve good performance in eavesdropping,
which guarantees the high accuracy in recognition.

7.2 Impact of Sound Volume
Tag-Bug can achieve over 60% recognition accuracy when the volume is larger than 60dB. We next linearly change
the volume of the player and use a decibel meter to measure the absolute volume. To comprehensively examine
the effectiveness, we use both top1 and top3 accuracy to evaluate the recognition of numbers. As shown in
Figure 12(e), there is a large gap when the volume increases from 76 to 80dB. It indicates that once the sound is
louder that 76dB, Tag-Bug can accurately recognize the sound with about 90% accuracy. Nevertheless, even when
the volume decreases to 60dB, Tag-Bug can still achieve top3 accuracy of about 60%. It still gives the chance to
speculate the privacy with high probabilities.

7.3 Recognition Accuracy of Letters
Tag-Bug can accurately recognize the letters of human voice with about 87% class-wise averaged precision. Next, we
further use another LeNet-5 to recognize the spoken letters played by the loudspeaker with the same deployment
in the free-space. As shown in Figure 12(f), Tag-Bug can accurately recognize all the 26 letters, where 23 letters
achieve over 80% precision. Here, ‘h’ achieves only 50% precision, because the rest of ‘h’ is recognized as ‘f’ due to
the similar syllables. Nevertheless, the adversary can still obtain the private information according to the similar
syllables. It is Tag-Bug is able to eavesdrop the human voice of both the numbers and letters.

8 CASE STUDY
Experiment Settings: As shown in Figure 1(a), we deploy our system in a living room to eavesdrop the daily
conversations. We let the loudspeaker play different kinds of human voice in a real living environment with
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ambient noise. For the sound source, we ask 2 male users and 2 female users to record 20 sentences with different
pitches, e.g., “do you have a dictionary”, “would you please hand me the book”, etc., which have totally 84 words.
Several RFID tags along with some reflection objects are placed in front of the loudspeaker, with different distances
relative to the loudspeaker. We deploy Tag-Bug to eavesdrop the sound played by the loudspeaker, where the
antennas are 3m away from the loudspeaker. We recover the sound and compare with the origin sound from
both the time and frequency domain. Moreover, we ask 20 volunteers to manually recognize the extracted human
voice based on the candidates of all the 20short sentences. The accuracy is defined as the number of correctly
recognized sentences over all the extracted human voice for recognition.

Performance Evaluation: Our system can efficiently eavesdrop the complicated human voice even in the noisy
environments. Figure 13(a) and Figure 13(b) use the spectrograms to show the similarity between the RFID sound
and the origin sound, spoken by a male and a female, respectively. From the time domain, each word is correctly
detected for both of the two users; from the frequency domain, the frequency band larger than 400Hz can be
efficiently recovered by our CGAN. Here, our CGAN can efficiently recover most of these high-frequency bands
for either the male with low pitch or female with high pitch. Although the spectrogram is not exactly the same
as the original sound, CGAN provides an efficient way to recover the harmonic frequency bands for the human
voice with multiple tones. Besides, we further ask 20 volunteers to manually recognize the extracted human
speech and plot the accuracy as shown in Figure 13(c). The recovered human speech can be recognized with an
average accuracy of 81.5% and a maximum accuracy of 94%. It indicates the high opportunity to eavesdrop the
human voice.

9 POSSIBLE DEFENSES
To defend the eavesdropping via RFID tags, the possible ways are to physically block the transmission of either
the sound from the loudspeaker to the tag or the RF-signals from possible tags to the reader.
The first way is to manually reduce the influence of the sound on the RFID tags. For example, by removing

the potential tagged objects around the loudspeaker, users can avoid both the vibration effect and the reflection
effect due to the loudspeaker, and thus defend the eavesdropping from the sensing source. Besides, the user can
also decrease the volume of the loudspeaker or use an earphone, when receiving the private information. Since
the power energy of the sound is much weaker, which can hardly vibrate the tags in these scenarios.

The second way is to manually increase the energy fading when the RF-signals are transmitting from the tag
to the reader. Since the performance of Tag-Bug is mainly determined by the transmission environment, e.g.,
the transmitting distance, the user can reduce the possibility of eavesdropping by increasing the propagation
path. For example, keeping the loudspeaker away from the surrounding walls can lead to the larger transmitting
distance and efficiently avoid thru-the-wall eavesdropping. Besides, deploying the shielding material in the
wall can prevent the reader from interrogating the tags outside the room. Moreover, the user can deploy an RF
jammer inside the meeting room, which can significantly affect the signal transmitting. It may block or affect the
transmitting of the weak signal backscattered from the tag, and thus avoid thru-the-wall eavesdropping.

10 LIMITATION & DISCUSSION
Eavesdropping on live human speech. In this paper, we mainly focus on the loudspeaker. Nevertheless, we
also try to eavesdrop on the live human speech by letting the user shouting at the tag. We find the tag is actually
vibrated by the human speech, but the extracted sounds are very noisy. We speculate that the tag vibration is
mainly caused by the air flow during human speech (e.g., speaking number ‘2’), which leads to large wind noise.
Eavesdropping on the live human speech can be a potential future work.

Tag-loudspeaker Distance. Since the COTS RFID tag is still relatively thick compared with the diaphragm of
the microphone, the tag-loudspeaker distance should be less than 150cm to achieve the eavesdropping on human
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voice. Adversary can intentionally hide the tags closer to the loudspeaker to improve the eavesdropping or use a
tag with ultra-light material.

Reader-Tag Distance. In our current system, we use USRP to collect the physical-layer signal for convenience,
and the evaluated reader-tag distance is below 2𝑚 due to the power limitation of USRP. For a powerful reader, it is
easy to increase the interrogation distance by increasing the transmitting power. Nevertheless, the eavesdropping
principle is the same as Tag-Bug and our system can be easily extended to the longer distance.

Types of Materials. In a real eavesdropping scenario, the materials of surrounding objects can undoubtedly
affect the eavesdropping. For example, when the tag is attached to different objects as shown in Figure 11(h),
the eavesdropping performance is totally different due to the different resonance effects of these materials.
Nevertheless, since the widely used objects, e.g., plastic bag, express package or paper cup, usually have relatively
good resonance effect, they can still pose a potential threat for the sound leakage. Besides, the materials of the
separating walls can also affect the eavesdropping, due to the signal absorption of these materials. For example,
walls with chicken wire in earthquake zones can block transmission of RF-signals and prevent the eavesdropping.
However, our methods can usually work for the general walls, e.g., wood walls or wet walls, since most RF-signal
can penetrate such walls. As for the vibration of the walls due to the resonance, it is usually quite weak and can
be ignored for sound eavesdropping.
Multiple Sensing Tags. In a real eavesdropping scenario, more than one tagged objects may exist together,

leading to the uncertainty for sound eavesdropping. To solve this problem, the attacker can iteratively try to
eavesdrop with each tag and choose the tag with the best sound performance for continuous eavesdropping.
Since the vibration of each tag can be extracted via either the vibration effect or the reflection effect, the attacker
need to try with both of the two mechanisms and choose the better one for eavesdropping. In this paper, we
focus on the fundamental principle and the feasibility of RFID-based eavesdropping, and thus omit part of the
implementation description.

11 RELATED WORK
RFID-based vibration detection. Recently, RFID has been widely used in indoor localization [24, 25, 38, 39, 42],
trajectory tracking [15, 21, 30, 34] and activity recognition [11, 12, 22, 36]. But only a few works apply RFID to
detect the vibration. TagBeat [40] makes the first attempt to measure the mechanical vibration based on one
RFID tag. TagTwins [14] further improves TagBeat by leveraging the dual RFID tags to eliminate the interference
of ambient noises. RF-Ear [41] extends device-based sensing scenarios to device-free scenarios. Even if these
methods leverage the compressive reading to estimate the period, they are all limited by the COTS RFID system,
and thus cannot sense the complicated human voice. TagSound [20] proposes the possibility of sensing the sound
with the RFID tag by leveraging the harmonic backscattered signal. Since the harmonic signal is weaker than the
raw UHF signal, the harmonic signal is difficult to achieve thru-the-wall eavesdropping.
Remote vibration detection. Due to the mature technique of radar system, the radar principle has been

used to achieve the remote vibration detection for a long time. LADAR [9] first investigates the possibility of
using radar signals for verifying the rotational speed of mechanical vibration systems. Davis et al. [10] further
leverage a high-speed camera to estimate the vibration of everyday objects, e.g., the plant leaves, based on the
principle of LADAR. But the vision-based attacks always suffer from the line-of-sight communication problem.
Inspired by LADAR, Wei et al. [37] further propose ART, which estimates the sound spectrum based on the WiFi
signal, which requires a MIMO antenna array. Moreover, the WiFi signal is easily affected by other surrounding
vibration objects. Kwong et al. [17] use the magnetic hard disk to eavesdrop, which needs to gain the access to
the target hard disk. In comparison, UHF RFID systems work at 920MHz with battery-less RFID tags, which can
penetrate the wall with less energy loss compared with the WiFi signals.
Acoustic eavesdropping. Recently, there have been active research efforts on sensing human activities,

especially the keystroke, via the acoustic eavesdropping. In particular, Asonov et al. [7] leverage a supervised
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learning method to recognize the keystroke. Ubik [35] locates the keystrokes on the solid surface by leveraging
the multi-path fading with the machine learning method. Liu et al. [23] leverage the dual microphones on the
smartphone to locate the keystrokes with the TDoA methods. Gyrophone [26] leverages the signal changes of
the gyroscope to infer the coarse information of the speaker. Li et al. [19] use mmWave to capture the vibration
of throat for user authentication. Instead of sensing human activities from the sound, we directly perform
eavesdropping via RFID tags.

12 CONCLUSION
In this paper, we explore the possibility of eavesdropping the human voice from COTS RFID tags and present Tag-
Bug, a battery-less approach for the thru-the-wall eavesdropping attack via COTS RFID tags. The key challenge
and principle lie in extracting and amplifying the vibration features due to the sound. We investigate a novel
feature, i.e., Modulated Signal Difference (MSD) from the signal model, which can amplify the influence of the
vibration on the received signal from either the vibration effect or the reflection effect. To achieve the full-frequency
band human voice, we propose a Conditional Generative Adversarial Network to recover the high-frequency band
by referring to the low-frequency band. Real-world experiments show that Tag-Bug can successfully capture the
monotone sound when the loudness is larger than 60dB. Tag-Bug can efficiently recognize the numbers of human
voice with 95.3%, 85.3% and 87.5% precision in the free-space eavesdropping, thru-the-brick-wall eavesdropping
and thru-the-insulating-glass eavesdropping, respectively. Tag-Bug can also accurately recognize the letters with
87% precision in the free-space eavesdropping.
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